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Abstract. KORUS-AQ was an international cooperative air quality field study in South Korea that measured local and 30 

remote sources of air pollution affecting the Korean peninsula during May-June 2016. Some of the largest aerosol mass 

concentrations were measured during a Chinese haze transport event (May 24th). Air quality forecasts using the WRF-Chem 

model with aerosol optical depth (AOD) data assimilation captured AOD during this pollution episode but over-predicted 

surface particulate matter concentrations, especially PM2.5 often by a factor of 2 or larger. Analysis revealed multiple sources 

of model deficiency related to the calculation of optical properties from aerosol mass that explain these discrepancies. Using 35 

in-situ observations of aerosol size and composition as inputs to the optical properties calculations showed that using a low 

resolution size bin representation under-estimates the efficiency at which aerosols scatter and absorb light (mass extinction 

https://doi.org/10.5194/acp-2019-1022
Preprint. Discussion started: 25 November 2019
c© Author(s) 2019. CC BY 4.0 License.



2 

 

efficiency). Besides using finer-resolution size bins, it was also necessary to increase the refractive indices and 

hygroscopicity of select aerosol species within the range of values reported in the literature to achieve consistency with 

measured values of mass/volume extinction efficiencies and light scattering enhancement factor (f(RH)) due to aerosol 40 

hygroscopic growth. Furthermore, evaluation of optical properties obtained using modeled aerosol properties revealed the 

inability of sectional and modal aerosol representations in WRF-Chem to properly reproduce the observed size distribution, 

with the models displaying a much wider accumulation mode. Other model deficiencies included an under-estimate of 

organic aerosol density and an over-prediction of the fractional contribution of inorganic aerosols other than sulfate, 

ammonium, nitrate, chloride and sodium (mostly dust). These results illustrate the complexity of achieving an accurate 45 

model representation of optical properties and provide potential solutions that are relevant to multiple disciplines and 

applications such as air quality forecasts, health-effect assessments, climate projections, solar-power forecasts, and aerosol 

data assimilation. 

1. Introduction 

Exposure to air pollutants is estimated to be the leading environmental risk affecting human health (Gakidou et al., 2017) 50 

and aerosols represent the leading pollutant responsible for these effects (Cohen et al., 2017). The estimates of aerosol 

impacts on human health generally involve the use of ground-based monitoring networks that are combined with aerosol 

optical depth (AOD) satellite retrievals and/or model estimates for regions not monitored to obtain global estimates (Liu et 

al., 2009; van Donkelaar et al., 2016; Goldberg et al., 2019a). The use of AOD to estimate surface concentrations often 

involves using atmospheric composition simulations able to “translate” a column-integrated measure of light extinction due 55 

to aerosols (AOD) into surface aerosol mass concentrations. Satellite AOD is also often used to improve air quality forecasts 

of surface particulate matter through data assimilation (Saide et al., 2013; Saide et al., 2014; Kumar et al., 2019; Benedetti et 

al., 2009). Aerosols also impact climate through aerosol-cloud-radiation interactions and represent one of the largest 

uncertainties in climate projections (Boucher et al., 2013). Chemistry-climate models estimate 3-D distributions of aerosols, 

which are used by the radiative transfer module to estimate aerosol radiative effects.  Again, this translation of aerosol mass 60 

to optical properties is performed in these models, often showing large inter-model variability (Myhre et al., 2013; Stier et 

al., 2013). Similarly, short term predictions of solar power (Schroedter-Homscheidt et al., 2013; Jimenez et al., 2016) and 

visibility forecasts (Clark et al., 2008; Lee et al., 2016a) also require the use of aerosol optical properties. Thus, evaluating 

the ability of models to properly translate aerosol mass and number concentrations into aerosol optical properties is key to 

providing confidence in model results supporting these disciplines. 65 

Previous research has shown various degrees of consistency between model evaluations of surface aerosol mass 

concentrations and column integrated aerosol properties. Lee et al. (2016b) used satellite AOD to constrain surface PM10 

(particulate matter with diameters below 10 μm) predictions and found large improvements against surface monitors 

regardless of the aerosol optical properties model used. Their results also showed slight discrepancies in the PM10 and AOD 
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when comparing models to observations, with some optical models showing larger biases in PM10 than AOD and some 70 

presenting the opposite behavior. Lennartson et al. (2018) also found discrepancies when comparing the ratio between PM2.5 

and AOD for observations and WRF-Chem simulations, finding the modeled ratios were 30-50% higher over South Korea 

during May-June 2016. Similar discrepancies were found by Mangold et al. (2011) when assessing model skill in predicting 

a regional pollution event over Europe driven by forest fire emissions and stagnation. Crippa et al. (2019) performed an 

ensemble of simulations to assess what combination of model inputs and configurations resulted in the best agreement  to 75 

observations in the southeast US. They reported that simulations configured with a modal aerosol model performed the best 

against AOD observations, while a sectional aerosol approach showed the best agreement against surface PM2.5, 

hypothesizing that aerosol hygroscopic growth and optical properties calculations could play a role in this discrepancy. 

Reddington et al. (2016) evaluated a global aerosol model in tropical regions affected by biomass burning. They found that 

the model under-estimated AOD more than PM2.5, even when an upper limit estimate of aerosol hygroscopicity was assumed 80 

for the aerosols. Reddington et al. (2019) found further inconsistencies, as the model showed good representation of 

observed vertical profile while under-estimating AOD and hypothesized it was due to uncertainties in the AOD 

computations. In another study, Zieger et al. (2013) compared observations of scattering enhancement due to hygroscopic 

growth against results from the Optical Properties of Aerosols and Clouds (OPAC) software module showing a systematic 

over-prediction. This over-prediction could lead to mismatches between AOD and PM2.5 in models using this code. 85 

KORUS-AQ (KORean United States Air Quality) Campaign was an international cooperative air quality field study in South 

Korea that measured local and remote (e.g., anthropogenic, biomass burning, dust) sources of air pollution affecting the 

Korean peninsula during May-June 2016. The objectives of the present study are to: 1) Evaluate one of the forecast system 

used to support flight planning during the mission;  2) Assess the degree of consistency between aerosol optical properties 

and mass concentrations for the forecasting and other configurations; and, 3) Explain the identified discrepancies. The results 90 

will provide guidance to future model development and we expect will motivate this type of analysis for other modeling 

systems and locations.  

2. Methods 

2.1 Regional modeling 

Air quality forecasts were performed using the Weather Research and Forecasting model (Skamarock et al., 2008) coupled to 95 

Chemistry (WRF-Chem) (Grell et al., 2005) to support both KORUS-AQ flight planning and post-campaign analysis. The 

modeling domains are shown in Figure 1, with a regional domain of 20 km resolution, covering major source regions of 

transboundary pollutants affecting the Korean Peninsula: anthropogenic pollution from eastern China, dust from inner China 

and Mongolia, and wild fires from Siberia (Saide et al., 2014). A 4 km resolution domain was nested to cover the Korean 

Peninsula and surroundings at higher resolution. This inner domain encompassed the region where the KORUS-AQ flights 100 

were planned and was able to better resolve local sources. Anthropogenic emissions were developed by Konkuk University 
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for KORUS-AQ forecasting and are described in Choi et al. (2019a) and Goldberg et al. (2019b) . The forecasts were 

performed once daily and used meteorological initial and boundary conditions from National Centers for Environmental 

Prediction Global Forecast System (NCEP, 2007) and chemical boundary conditions from the Copernicus Atmosphere 

Monitoring Service (Inness et al., 2015). Initial conditions for gases and aerosols were obtained from the previous 105 

forecasting cycle. AOD data assimilation was implemented for the outer domain using data from low-earth orbiting (GMAO 

Neural Network retrieval) and geostationary satellites (Geostationary Ocean Color Imager retrievals (Choi et al., 2018; Choi 

et al., 2016)) as described in Saide et al. (2014). To our knowledge, this was the first near-real time implementation of 

assimilating geostationary AOD. Each assimilation step modified aerosol mass keeping the species distribution and size of 

each bin constant. Thus, the assimilation had the potential to change the bin-aggregated composition and size distribution 110 

when size bins with different composition were scaled differently. Although there was no data assimilation performed on the 

inner domain, this domain was initialized 18 hours after the outer domain and thus was influenced by data assimilation 

through initial and boundary conditions. The forecast configuration was based on WRF-Chem version 3.6.1 with 

modifications. The aerosol and gas-chemistry packages corresponded to the 4-size bin Model for Simulating Aerosol 

Interactions and Chemistry (MOSAIC, Zaveri et al., 2008) and a simplified hydrocarbon chemical mechanism (Pfister et al., 115 

2014), both selected to reduce computational costs compared to using the 8 size bin MOSAIC configuration and more 

complex chemical mechanisms. Although detailed secondary organic aerosol (SOA) formation schemes have been 

implemented for the 4-bin MOSAIC configuration (Shrivastava et al., 2013; Knote et al., 2015), it increases computational 

costs significantly. Thus, the simplified SOA formation scheme, proposed by Hodzic and Jimenez (2011) and verified to 

work well in multiple later studies (e.g., Hayes et al., 2015; Shah et al., 2019), was implemented to keep computational costs 120 

low. While this scheme included anthropogenic and biomass burning SOA, biogenic SOA was also modeled by using a SOA 

precursor surrogate derived from isoprene as described in Shrivastava et al. (2011). Other modeling configurations related to 

meteorological parametrizations, analysis nudging, and other emission sources are described in Saide et al. (2014).  

In addition to the forecasting results, we performed retrospective sensitivity simulations summarized in Table 1. We first 

used the same configuration as the forecast, which we labeled MOSAIC4b. To explore the model sensitivity to increasing the 125 

resolution of the aerosol size bins, we performed simulations using the MOSAIC 8-bin configuration, coupled to the Carbon-

Bond Mechanism version Z (CBM-Z) chemical scheme (Zaveri and Peters, 1999). Some caveats of this sensitivity 

simulation are that it uses a different gas-phase chemistry scheme and does not include secondary organic aerosol formation, 

thus this needs to be considered in the analysis when comparing it to the base configuration. This simulation is labeled 

MOSAIC8b. WRF-Chem can also be configured with the Modal Aerosol Dynamics Model for Europe (MADE) model, 130 

where aerosol sizes are represented by log-normal modes (as opposed to sections as for MOSAIC). We used the 

configuration coupled to the updated Regional Atmospheric Chemistry Mechanism (RACM, Ahmadov et al., 2014) which 

contains secondary organic aerosol formation using the volatility basis-set (Ahmadov et al., 2012) and aerosol optical 

properties calculations (Tuccella et al., 2015). We label these simulations as RACM#, with # going from 1-4 depending on 

changes to parameters described in Table 1.  135 
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Simulations MOSAIC4b, MOSAIC8b and RACM1 are referred to as base configurations, while RACM2-4 are sensitivity 

simulations. All retrospective simulations were performed only for the 20 km resolution domain in this study, as we focus on 

a pollution event from long range transport. Also, no data assimilation was performed for these simulations. Unless 

otherwise noted, they use the same inputs and parametrizations as for the forecast simulations. 

2.2 Optical properties calculation 140 

Aerosol optical properties in WRF-Chem are computed using a Mie code and Chebyshev expansion coefficients for each 

size bin, assuming an internal mixture within the bin and a volume mixing rule (Fast et al., 2006). The refractive indices (real 

part) and density used for each species are defined in Table 2 under the base configuration column. Only black carbon and 

other inorganics (OIN, inorganic aerosols other than sulfate, ammonium, nitrate, chloride and sodium) are considered to 

absorb solar radiation with an imaginary refractive index of 0.71 and 0.006, respectively. For the MOSAIC configurations, 145 

the size bins in the optical properties calculation correspond to those in the aerosol model (4 and 8 size bins, defined in Table 

3); while, for modal aerosols, the modes are mapped to 8 sectional bins (same boundaries as the MOSAIC 8 bins) before the 

calculation by computing the aerosol mass and number concentration included in each section. WRF-Chem computes optical 

properties for ambient conditions. Thus, derivation of dry-extinction and scattering enhancements due to hygroscopic growth 

at fixed relative humidity require off-line computations. These computations require the aerosol water to be recalculated for 150 

the specified relative humidity. Since both the MOSAIC and MADE aerosol models compute aerosol water based on aerosol 

thermodynamics, off-line versions of these computations are needed. In order to simplify the process and add additional 

capabilities, an alternative off-line optical properties code was developed that mimics the WRF-Chem one. This alternative 

approach uses Mie calculations from Mätzler (2002) code which is based on the Appendix of Bohren and Huffman (1983). 

Aerosol water uptake was parameterized using the method proposed by Petters and Kreidenweis (2007), which utilizes the 155 

hygroscopicity parameter (κ). Values for the hygroscopicity parameter representing the base configuration are obtained from 

the WRF-Chem code used to compute aerosol water for the Goddard Chemistry Aerosol Radiation and Transport 

(GOCART, Chin et al., 2002) model which implements the κ approach and a volume mixing rule.  Following this 

configuration κ is set to 0.5 for ammonium sulfate and ammonium nitrate, and 1.16 for sodium chloride.  For organic 

aerosol, black carbon, and dust, κ is set to zero as these aerosol types are currently not considered as electrolytes in the 160 

MOSAIC and MADE thermodynamic models and thus do not contribute to water uptake in these frameworks (Fast et al., 

2006). Ways to improve these simplifications will be discussed later in the text. Figure 2 shows an evaluation of the 

alternative approach against the off-line WRF-Chem routines for the MOSAIC model that were developed as part of the data 

assimilation scheme (Saide et al., 2013). Under dry conditions, the alternative approach shows similar results as the WRF-

Chem optical properties with the extinction to mass ratio curve, following each other for all sizes (Fig. 2a). The high 165 

frequency oscillations shown by the Mie code of our alternative approach are smoothed in WRF-Chem due to the use of the 

Chebyshev expansion coefficients (Fast et al., 2006) and interpolation between wavelengths (optical properties at 400 nm 

and 600 nm are used to derive values at mid-visible wavelengths). Water uptake using the MOSAIC approach and the one 
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described here provides similar results (Fig 2b), with values ~10% lower in the alternative approach that will be taken into 

consideration when evaluating the optical properties code in the next sections. The alternative optical properties code 170 

provides flexibility to evaluate changes in configuration that would be difficult to implement in the WRF-Chem optical 

properties code. These include using more than 8 bins to improve size resolution, using variable density for aerosol species, 

and altering κ to vary the extent that different aerosol chemical species take up water. 

2.3 Airborne Observations 

Airborne data used in this study were obtained on the NASA DC-8 during the KORUS-AQ campaign (Aknan and Chen, 175 

2019) during the flight starting at 22:00 UTC on May 24th (May 25th in local Korean time) 2016. This flight focused on 

measurements over the Yellow Sea and sampled some of the highest aerosol mass concentrations of the deployment 

originating from mostly anthropogenic pollution from China (Peterson et al., under review; Nault et al., 2018) . This flight 

was also chosen as it corresponds with a period of large model discrepancies (see Results Section). Measurements used in 

this study include numerous in-situ chemical composition and mass concentration and physical properties of the aerosol, and 180 

remote sensing physical properties of the aerosol.  PM1, not including black carbon, was measured by the University of 

Colorado Boulder, High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS, hereinafter “AMS” for 

short) (DeCarlo et al., 2006; Nault et al., 2018). These measurements included the mass concentrations of sulfate, nitrate, 

ammonium, chloride, and organic aerosol, and the estimated aerosol density. The estimation of aerosol density is described 

in Nault et al. (2018) and DeCarlo et al. (2004). Refractory black carbon concentrations were measured by the NOAA Single 185 

Particle Soot Photometer (SP2) (Lamb et al., 2018). Bulk water-soluble, inorganic aerosol was measured by the University 

of New Hampshire usingTeflon filters, followed by off-line ion chromatography with an estimated aerodynamic diameter 

cut-off of ~4 µm (SAGA, Dibb et al., 2000; McNaughton et al., 2007). The in-situ, physical aerosol properties were 

measured by NASA Langley Aerosol Research Group (LARGE), which included dry aerosol scattering, extinction and 

single-scattering albedo, and scattering enhancements due to hygroscopic growth. These measurements were done with two 190 

TSI nephelometers (at 450, 550, and 700 nm wavelength) and a Particle Soot Absorption Photometer (at 470, 532, and 

660nm wavelength) (Ziemba et al., 2013). Aerosol size distributions were also measured by the LARGE suite using a 

Scanning Mobility Particle Sizer (SMPS, TSI model 3936), a Laser Aerosol Spectrometer (LAS, TSI model 3340) and an 

Aerodynamic Particle Sizer (APS, TSI model 3321). AMS and SP2 measure mostly submicron aerosols while the LARGE 

inlet cut-off is at 5 μm aerodynamic diameter (McNaughton et al., 2007). Relative humidity was estimated using 195 

measurements of water vapor from the NASA Langley/Ames Diode Laser Hygrometer (Podolske et al., 2003). Finally, 

extinction curtains were measured using the Airborne Differential Absorption Lidar (DIAL) – High Spectral Resolution 

Lidar (HSRL) (Hair et al., 2008), from the NASA Langley LIDAR group. In-situ data was obtained from the 1 second 

merges (version 3) and merged with the corresponding version of data that was available through individual files (e.g., size 

distributions). 200 
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Though the instruments measuring size distributions overlap in some size bins, they use different sampling frequencies, and 

they use different sizing techniques based on different measures of aerosol diameters (e.g., geometric, optical and 

aerodynamic). Thus, these measurements need to be homogenized and combined to obtain a single size distribution. Thirty-

two size bins using geometric diameter from a lower bound of 39 nm to an upper bound of 10 µm with a width (dlnD) of 

0.1737 are used to re-bin the SMPS, LAS and APS size distributions. These boundaries and width are chosen so the 205 

distributions can be easily aggregated to the modeled size bins (Table 3).  Data from the SMPS, LAS and APS are used for 

bins 1-8 (39 nm – 156 nm), 9-18 (156 nm- 743 nm) and 19-32 (743 nm – 10 µm), respectively. APS measures aerodynamic 

diameters, thus these are converted to geometric diameter by multiplying aerodynamic diameter by √X/ρ (valid in the 

continuum regime that is where most of the coarse mode aerosol mass is in this study) assuming dynamic shape factor (X = 

1.6) and density (ρ = 2.6 g/cm3) of dust aerosols, which we assume dominates the coarse mode aerosol. This assumption is 210 

based on the fact that AMS and SAGA measured similar concentrations of inorganic species (Figure 3a), and thus sulfate, 

ammonium, chloride and nitrate was mostly not present in sizes covered by SAGA but not by AMS. But since the aerosol 

size distribution measurements do show aerosol presence in these coarse sizes, we assume it is dominated by dust. Although 

LAS measures geometric diameter when particles are spherical, it is calibrated with NIST traceable polystyrene latex spheres 

(PSL), which have a larger refractive index (1.595) than the mixtures measured during the flight. Thus, LAS diameters are 215 

multiplied by 1.115 to approximately correct for this difference (Nault et al., 2018). While LAS and APS results are reported 

at 1 Hz frequency, SMPS provides data every minute. Since most datasets used in this work are provided at 1 Hz, we use 

nearest neighbor interpolation to assign SMPS values at 1 Hz resolution. This is likely to have negligible impact in our 

results as there is little aerosol mass in the bins assigned from the SMPS and mass extinction efficiency is low at these sizes. 

Previous studies have found a saturation of the LAS detector for large aerosol number and mass concentrations (Liu et al., 220 

2017; Nault et al., 2018), which occurs when scattering from individual particles start overlapping so that the signal does not 

go down to the baseline between events. This was the case for a large fraction of the measurements in the haze layer during 

the flight studied. Figure 3b shows that while this saturation is evident for large aerosol mass concentrations, for lower 

aerosol mass concentrations (where no saturation is expected) the LAS measures larger volume concentrations than the 

AMS+SP2 by ~11%. Although 11% falls within the stated accuracies of both measurements, it is also potentially reflecting a 225 

true difference in concentrations. The AMS detected exotic metals not typically reported, such as rubidium (Figure 4a), in 

the haze event. There was, on average, 10 ng sm–3 rubidium in the plume between 01:30 to 05:00 UTC (and up to 71 ng sm–

3). Rubidium originates either from soil (e.g., dust) (Kabata-Pendias and Pendias, 2001) or anthropogenic emissions, such as 

dust from steel and aluminum industries (Dillner et al., 2006; Tang et al., 2018). Rubidium is one of numerous types of metal 

emitted from these sources and would account for the minority of the mass for these emissions (Dillner et al., 2006). Also, 230 

the detection shown here is likely a lower limit of the actual concentrations considering the refractory nature of the aerosols 

typically containing rubidium. The presence of rubidium would suggest other inorganic material present in the haze event 

not typically measured by the AMS, suggesting the 11% difference in volume is due to these types of compounds. Thus, we 

corrected the LAS submicron number and volume distributions using the aerosol mass measured by the AMS+SP2 
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accounting for the ~11% volume not detected. For this, scaling factors were computed using the aerosol volume (estimated 235 

using the measured aerosol mass and the aerosol density reported by the AMS), corrected by 11%, and dividing by the 

measured LAS volume, accounting for the AMS transmission. The AMS transmission considers 100% and 0% efficiency at 

aerodynamic diameters of 550 nm and 1.5 µm, respectively, and a linear decrease in between using the logarithm of the 

aerodynamic diameters (Hu et al., 2017). The transmission curve was converted to geometric diameter for each observation 

using Equation 28 from DeCarlo et al. (2004) iteratively to update the Cunningham slip correction factor until convergence. 240 

The LAS correction assumes that the fractional contribution of aerosol not measured by AMS+SP2 is constant, which is a 

limitation of the approach, but we expect it to have limited impact in the analysis due to the small contribution. Submicron 

dust aerosol mass concentration is estimated using this volume residual, assuming dust density of 2.6 g/cm3 (value used in 

WRF-Chem), and falls into the OIN aerosol category when comparing to model estimates. 

2.4. Ground based observations 245 

We also used multiple sources of ground-based observations. This includes Level 1.5 AOD at 500 nm wavelength, which 

was obtained from the Aerosol Robotic Network (AERONET) version 3 algorithm (Giles et al., 2019; Eck et al., 2018).  

During KORUS-AQ, the AERONET network in South Korea was enhanced by adding additional sites and thus a total of 21 

locations were available during the campaign period (https://aeronet.gsfc.nasa.gov/). We also used PM2.5 and PM10 from the 

air quality network maintained by Korean National Institute of Environmental Research (NIER). For the period analyzed, 250 

PM2.5 and PM10 data were available from 320 and 329 locations, respectively, distributed across the peninsula. 

3. Results and discussion 

3.1 Forecast evaluation 

Figure 5a shows comparisons of AOD measured by the AERONET network over South Korea versus forecasted AOD at the 

site locations. The model shows good performance over the period. This performance is expected as the system is 255 

assimilating satellite AOD, and satellite AOD retrievals have shown good agreement with AERONET data in the region 

(Choi et al., 2019b). However, the forecasts show large over-predictions of surface particulate matter for the period of large 

concentrations in the peninsula, consistent with previously reported results (Lennartson et al., 2018). These over-predictions 

are more severe for PM2.5 during the passing of the transboundary pollution coming from China (May 24 th and 25th), 

sometimes exceeding a factor of two difference. This points towards model deficiencies in connecting surface mass 260 

concentrations with column optical properties, which is explored in this study focusing on the day the aircraft sampled this 

airmass (May 24th). Also, note that PM2.5 and PM10 are similar in the model while PM10 is larger than PM2.5 in the 

observations, pointing towards model biases in representing coarse mode aerosols.  

Figure 6 shows observed and forecasted AOD retrievals at noon local time the day of the May 24 th DC-8 flight that sampled 

the transboundary pollution that affected the Korean peninsula. The forecasts shown have not yet assimilated the AOD 265 
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retrieved that day, showing the ability of the system to carry forward the information assimilated the day before. AODs 

larger than 1 were found over areas in the Yellow Sea that were correctly forecasted and that enabled the KORUS-AQ team 

to plan a successful flight (track in yellow on the right panel of Figure 6) in the region. Data from this flight are used to 

perform a detailed model evaluation to understand the model biases. 

One potential reason for the discrepancies found could be related to model representation of aerosol vertical profiles. Figure 270 

7 shows aerosol extinction curtains over the DC-8 trajectory, as sampled by the DIAL-HSRL, and as predicted by the 

forecasts. The haze layer is mostly confined to below 2 km, which the model represents properly. The model has slightly 

higher mixing layers which, if anything, would lead to opposite biases (e.g., under-estimation of surface concentrations). A 

layer with lower aerosol extinction found between 2 and 6 km, which DIAL-HSRL classified as dust (not shown) and where 

SAGA reported elevated levels of Ca+2 associated to dust, is also well captured by the model (in terms of both amount and 275 

aerosol type). Thus, we discard issues with model representation of the vertical placement of the plume as reasons for 

explaining the AOD to PM inconsistencies mentioned earlier. 

AOD is also highly sensitive to relative humidity (Brock et al., 2016a) and previous studies have explained AOD biases due 

to model issues representing relative humidity (Feng et al., 2016). In-situ measurements of relative humidity in the haze 

layer showed average values of 62% with an interquartile range of 9% (57-66 %). The forecast shows a reasonable 280 

representation with slightly higher average value (64%) and interquartile range (10%). Thus, we conclude skill in predicting 

relative humidity is not related to the discrepancies found in this study. 

From this analysis, we conclude that the likely reason for the discrepancy resides in the computation of the aerosol optical 

properties, i.e., how aerosol mass is translated to AOD, and thus in the following sections we perform a thorough evaluation 

of this topic using in-situ airborne data. 285 

3.2 Closure studies 

Model representation of optical properties can be separated into two stages: 1) how well the model represents the aerosol 

properties which drive the optical properties computation (e.g., size distribution, composition, concentrations, etc.); and, 2) 

the accuracy of the optical properties code. The latter can be evaluated by driving the optical properties code using observed 

quantities and comparing the outputs with measurements of aerosol optical properties, a methodology that has been applied 290 

for previous field campaigns (Barnard et al., 2010; Brock et al., 2016a) and that we will refer to as “closure study” here. This 

allows us to isolate issues regarding the optical properties code and to assess ways to improve the model representation of 

optical properties.  

One challenge of closure studies is that the optical properties code requires speciated and size-resolved aerosols, thus 

assumptions need to be made on how to distribute the measured chemical species into the size bins. Figure 3a shows a scatter 295 

plots of SAGA filter-based vs AMS online measurements of inorganic aerosol mass concentrations (sulfate, nitrate, 

ammonium, chloride), showing good agreement for this flight. While secondary inorganic aerosol mass concentrations were 

elevated in the coarse mode for other KORUS-AQ flights (and thus not detected by AMS) (Heim et al., 2019), for the flight 
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analyzed here this fraction seems to be negligible. Thus, we assume that the tail of the coarse mode is composed of only OIN 

(likely dust). We also assume that composition is not size dependent within the accumulation mode. Size resolved AMS 300 

measurements support this assumption by showing similar composition within the accumulation mode (Fig 4b). We set the 

aerosol diameter cut-off between the accumulation mode and the lower tail of the coarse mode at 884 nm, based on size 

distribution measurements (Fig. 8). Also, since both LAS and APS cover the lower tail of the coarse mode we use APS 

estimates in this range because LAS presents lower volume concentrations. 

Figure 9 shows multiple statistical metrics in the form of box and whisker plots for observations and closure results during 305 

the three consecutive hours that the DC-8 spent measuring the haze layer at multiple altitudes (2:00-5:00 UTC, see Figure 7). 

The different closure scenarios are described in Table 4 and consist of the base configuration and then the base with varying 

parameters such as the size bin resolution, refractive indices, and hygroscopicity parameter.  

3.2.1 Dry extinction 

A variable that is typically computed to assess the efficiency of an aerosol population at scattering light is the ratio between 310 

dry scattering/extinction and aerosol mass concentrations, which is typically referred to as “mass scattering/extinction 

efficiency”. Note that for this study, aerosol mass concentration corresponds to that measured by AMS+SP2. We also define 

“volume extinction efficiency” as the ratio between dry extinction and aerosol volume concentration, obtained from the 

aerosol size distribution measurements after performing the corrections described in section 2.3. As AMS and SP2 measure 

mostly submicron aerosols of select chemical species, there is potential for unaccounted aerosol mass that is contributing to 315 

aerosol extinction that could complicate the interpretation of the mass extinction efficiency. This is why the volume 

extinction efficiency is reported in addition to the mass extinction efficiency as the extinction and volume are measured for 

all aerosols in the same size range (behind the LARGE inlet).  

Figure 9a,b clearly show how the base configuration of the optical properties code drastically under-predicts the dry 

extinction produced by unit mass (and volume), consistent with the discrepancies shown in Figure 5. Aerosols are binned 320 

into 4 size bins in the base configuration (Closure 1); thus, Closure 2 and 3 explore finer binning to 8 and 16 sections, 

respectively. The finer binning does improve the performance, especially when going from 4 to 8 bins (Fig. 9a,b). Figure 8 

shows the size distributions for the three types of size aggregation, showing a large diversity in the bin concentrations 

contributing to the total mass in fine-resolution bins, which is lost when aggregating to coarser-resolution bins. Figure 10 

shows steep changes in the volume extinction efficiency in the diameters where most of the aerosol mass is found. In the 4-325 

bin configuration, the whole accumulation mode is included in one bin. After aggregation, a mean diameter of 293 nm is 

obtained, which has a volume extinction efficiency below 6 m2/m3 with base refractive indices. On the other hand, a large 

percentage of the accumulation mode is found in bin #4 with the 8-bin configuration, which has a mean diameter of 380 nm 

and a volume extinction efficiency of ~8 m2/m3, which raises the overall efficiency substantially. The improvements from 8 

to 16 bins are lower than from 4 to 8 bins, but still significant, and are due to similar reasons. For instance, bin #8 in the 16-330 
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bin configuration shows volume extinction efficiency above 9 m2/m3, getting close to the maximum values for base 

refractive indices. Negligible improvements are found when further refining from 16 to 32 size bins (not shown). 

Although improvements are found when refining the size bins, significant biases still persist for the 16 bin configuration 

(Fig. 9a,b). Thus, we explore modifying the refractive indices used in the Mie calculation (see section 2.3), based on values 

reported in the literature for the aerosol species accounting for most submicron mass. Typical real refractive indices assumed 335 

in closure studies (e.g., Brock et al., 2016a) for ammonium-sulfate and ammonium-nitrate are 1.527 (Hand and Kreidenweis, 

2002) and 1.553 (Tang, 1996) which are larger than those used in the base configuration, thus we update them accordingly. 

For primary and secondary organic aerosols, there is a large range of values found in the literature (e.g., Moise et al., 2015; 

Lu et al., 2015). Aldhaif et al. (2018) derived OA real refractive index from field deployments by air mass type, finding a 

mean value of 1.54 with 1.52-1.55 as the 25-75th percentile range for urban air masses. We chose the value of 1.55 as it is in 340 

the 25-75th percentile range and because it is a typical value used in past studies (Zhang et al., 1994; Hand and Kreidenweis, 

2002; Hodzic et al., 2004). This value also corresponds to the mean real refractive index reported by Lu et al. (2015) for 

primary organic aerosol based on a literature review. The Closure 4 case includes these updates (summary of updated 

parameters in Table 2) showing an increase in the efficiencies which improves the model representation (Figure 9a,b). 

Although the mass and volume extinction efficiencies are still under-predicted, there is much better agreement when using 345 

the updated refractive indices, obtaining an overlap of the observed and modeled 25-75th percentile boxes. Besides the 

overall increase in the efficiencies, there is also a slight shift towards smaller sizes of the location where the efficiencies vs 

particle dry-diameter curve achieves its maximum (Figure 10a). The update in the OA refractive index generates the most 

impact (not shown) due to the larger increase (7% change vs 0.5% and 3.5% for ammonium sulfate and ammonium nitrate, 

respectively) and large contribution to the total mass (23% on average). 350 

3.2.2 Hygroscopic growth 

While the analysis in the previous sub-section was performed for the dry aerosol extinction, we also explored possible biases 

due to hygroscopic growth, considering that relative humidity was in the 50-80% range in the haze layer. We assessed the 

performance of the optical properties code, driven by observed inputs in representing the aerosol light scattering 

enhancement factor (f(RH)), defined here as the ratio between 550 nm aerosol scattering at 80% (wet) and 20% (dry) relative 355 

humidity. 

Figure 9c shows that the base configuration performs well for f(RH). This is due to a combination of the wrong reasons (i.e., 

cancellation of errors), as it deteriorates when increasing the size bin resolution (Closure 2 and 3) and upon increasing the 

refractive indices (Closure 4). Figure 10a additionally shows f(RH) and can help explain this behavior, as f(RH) has a strong 

decreasing trend with increasing diameter in the region <350 nm. Thus, because the 4-bin representation displays an 360 

apparent decrease in the mean diameter (Figure 7), f(RH) is over-estimated. As the size bins are refined, less aerosol mass 

falls in the smaller size bins, decreasing the total f(RH). The further decrease of f(RH) with increasing refractive indices at 

these size ranges is also shown in Figure 10a. While our alternative approach at computing aerosol water uptake resulted in 
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values ~10% lower than that shown by WRF-Chem, the difference in the observed vs Closure4 f(RH) are close to 30%, thus 

we conclude that similar biases would be expected for the WRF-Chem routines.  365 

To improve the optical properties code performance, we updated the hygroscopicity parameter based on values found in the 

literature for the species contributing to most of the aerosol mass. κ values are generally reported with large range of 

uncertainty and can depend on the measurement technique and environmental conditions. Petters and Kreidenweis (2007) 

show a wide range of κ values for ammonium sulfate, from 0.33 to 0.72 and a mean of 0.53, for κ derived using growth 

factors, and a mean value of 0.61 based on CCN measurements. For ammonium nitrate, only CCN derived κ is available 370 

with a mean value of 0.67 and a range of 0.577-0.753. We chose to use the mean values of the CCN-derived estimates (0.61 

for ammonium sulfate and 0.67 for ammonium nitrate), as they are contained in the ranges provided in Petters and 

Kreidenweis (2007) and in other studies (e.g., Good et al., 2010). For organic aerosol, the range is even larger. We chose to 

treat organic aerosol and OIN as slightly hygroscopic, as it was originally specified in WRF-Chem parametrization for 

GOCART, with κ values of 0.14 for both, which is consistent with values reported for aged urban OA and for rural 375 

environments (Wang et al., 2010; Mei et al., 2013; Levin et al., 2014). A summary of the updated κ values can be found on 

Table 2. Figure 9c shows significant increases in f(RH) from Closure 4 to Closure 5, as expected, from the increases in the 

hygroscopicity parameter up to a similar level as the observations. Sensitivity analysis shows that most of the change is 

related to the κ increases in ammonium sulfate and ammonium nitrate due to their larger contribution to mass fraction (62% 

on average), while additional water uptake of organics and other inorganic aerosols play a minor role. Thus, choosing a 380 

lower OA κ value more consistent with other studies (Brock et al., 2016a; Shingler et al., 2016) would have resulted in 

similar findings.  

3.2.3 Other aerosol optical properties 

Figures 9d and 9e show the change for the Angstrom Exponent (AE) and single-scattering albedo (SSA) for the different 

model closure configurations shown. Overall, the representation of both AE and SSA improve when going from the coarse 385 

size bin resolution and base parameters to the finer bin and updated parameters, which represents independent pieces of 

evidence that the change in configuration is in the right direction. As seen in Figure 10b, AE is sensitive to the aerosol size 

distribution and generally decreases with larger aerosol sizes. This explains the sharp decrease when refining the aerosol size 

bins (Closure 1 to Closure 2), due to the lower mean diameters for the 4-bin configuration as described previously. Figure 9e 

shows that SSA gradually increases with the change of configuration, which is due to changes in mean diameters and higher 390 

scattering when increasing the real refractive indices (Fig 10b). While the AE of Closure 5 matches very well with the 

observed values (mostly due to improvements from Closure 1 to 2), SSA is still slightly under-predicted, which is an issue 

previously identified in other closure studies using a similar approach for computing aerosol optical properties (Barnard et 

al., 2010). This under-estimation could be due to multiple uncertainties including assumptions on black carbon and OIN 

complex refractive indices, black carbon mixing state, and size-independent black carbon fractional contribution to the 395 

accumulation mode. 
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3.3 Evaluation of retrospective simulations 

The previous section provides clarity on what we should expect from the optical properties code if the model was 

reproducing observed aerosol size distributions and composition. In this section we perform a similar analysis but driving the 

optical properties code with simulated aerosol properties (summarized in Table 1 and shown in Figure 11). Comparing 400 

Figures 11a and 11b, we can see large discrepancies in the performance of the mass and volume extinction efficiencies, 

opposite to the closure studies (Figure 9) where they remain consistent. For instance, MOSAIC4b shows good representation 

for the mass extinction efficiency against Closure 5 but largely under-estimates the volume extinction efficiency. Comparing 

Figure 11 and 9, the mass extinction efficiency is shifted up in the three base modeling configurations, and thus a refinement 

in size bins (going from MOSAIC4bin to MOSAIC8b or RACM1) has the opposite effect on performance for mass and 405 

volume extinction efficiencies. The modeled aerosol mass concentration used when computing the mass extinction 

efficiency is that for which the AMS transmission is applied. Thus, one possible explanation could be that the models have 

significant aerosol mass outside of the sizes where the AMS can detect. This would reduce the mass concentration after 

applying the transmission curve which would increase the extinction to mass ratio (i.e., the mass extinction efficiency) due to 

the unaccounted mass that contributes to extinction. Figure 12 shows the size distributions for the simulations, where this 410 

issue is evident as all three base model configurations (MOSAIC4b, MOSAIC8b and RACM1) place substantial aerosol 

accumulation mode mass in sizes where the AMS transmission starts decreasing (> 625 nm). This is not the case for the 

observed size distribution (Fig. 8), where most accumulation mode aerosol mass is within the AMS transmission and 

explains the consistency between mass and volume extinction efficiency for closure studies. 

Another contributor to this discrepancy is the model prediction of chemical composition. Figure 13 shows that, although 415 

OIN absolute concentrations are in the range of the observations, all modeling configurations over-predict the fractional 

contribution of submicron OIN mass (17-28% vs 12% in the observations), with the MOSAIC configurations showing larger 

over-predictions. Since the aerosol mass used in the mass extinction efficiency corresponds to that measured by AMS+SP2 

where OIN is not included, then over-predicting the OIN fraction would increase the mass not accounted for in the ratio, 

increasing it relative to the observations. Potential reasons contributing to the over-prediction in OIN fraction include: (1) an 420 

over-prediction of the “other PM2.5” anthropogenic emission category and/or distributing it in the accumulation mode as 

opposed to in the lower tail of the coarse mode; (2) over-prediction of fine mode by wind-blown dust parameterizations 

(Kok, 2011); and/or, (3) insufficient production of secondary organic and inorganic aerosols (see under-prediction on left 

panel of Fig. 13), which has the effect of increasing the fractional contribution of the primary aerosol species (OIN in this 

case). Under-predictions of organic aerosol could be explained by large variations of secondary organic aerosol production 425 

within urban areas (Nault et al., 2018) that are not captured by the modeling configurations. Under-predictions of secondary 

inorganics could be due to missing mechanisms to produce sulfate during Chinese haze conditions (e.g., Gao et al., 2016a). 

These mechanisms were not included in this study as uncertainties remain on the actual pathways (Guo et al., 2017) and 

representation in models (Song et al., 2018). Other potential reasons for the under-estimate on secondary inorganics could 
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include slow in-cloud H2O2 oxidation of SO2 due to under-estimates of cloud volume and NOx underpredictions (e.g., 430 

Goldberg et al., 2019b). 

Another point to note is that models under-predict the relative magnitude of the coarse aerosols (2.5-10 μm range, bin #4 in 

the 4-bin configuration). This helps to explain why the biases shown in Figure 5 are more pronounced for PM2.5 than PM10, 

as the under-prediction in the coarse aerosols is offset by the over-prediction in the fine aerosols. 

As mentioned earlier, all three base modeling configurations have issues representing the size distribution regardless of the 435 

large diversity in chemical and aerosol scheme. This is a topic that needs to be explored further in a future dedicated study. 

In the case of the MOSAIC configurations, the shape of the size distribution evolves through aerosol processes (coagulation, 

condensation, etc.). Since these processes that modify the size distribution are reasonably well known (Seinfeld and Pandis, 

2016), it is unlikely such large errors would arise from the model implementation of these processes. A more likely 

explanation is that the shape of the size distribution established at the point of emission is too wide to start with and unfolds 440 

into the results shown. In the case of the RACM1 configuration, the widths of the log-normal modes are controlled by the 

geometric standard deviation (GSD). In the WRF-Chem implementation the GSD is fixed at 1.7, 2.0, and 2.5 for nuclei, 

accumulation and coarse modes, respectively. Changing the GSD to 1.6 for both the nuclei and accumulation mode (i.e., 

RACM2 simulations) results in a better representation of the observed aerosol size distribution (Fig. 12 vs Fig. 8), with a 

narrower accumulation mode peaking in the 300-450 nm range and much smaller mass contribution in sizes above 625 nm. 445 

These results are consistent with Brock et al. (2016b), which showed that GSD in the southeastern US are in the 1.4-1.6 

range while chemistry-climate models generally over-predict it by using a GSD value of 2.0. 

After correcting the modeled size distribution, a larger percentage of the aerosol mass is found within the AMS transmission 

(see increase in mass for all species from RACM1 to RACM2 in left panel of Fig. 13). Also, the model representation of 

mass and volume extinction efficiency against observations now follows the same trend for RACM2 (Figure 11a,b) but 450 

minor discrepancies still remain (e.g., mass extinction efficiency performs well against Closure 5 but volume extinction 

efficiency slightly under-predicts). Besides the over-prediction of the OIN fraction mentioned earlier, the remaining 

discrepancy can also be explained by the aerosol density used for organic aerosols (OA) in the model. For the closure study, 

OA mass is converted to volume using the density reported by the AMS, which varies substantially with the oxidation state 

of organic aerosol (Kuwata et al., 2012). For the period analyzed here, the OA density has a mean of 1.5 g/cm3 and 25th and 455 

75th percentiles of 1.35 g/cm3 and 1.6 g/cm3, respectively. In the case of the simulations, the aerosol optical properties code 

in WRF-Chem uses a constant OA density of 1.0 g/cm3. Thus, a lower density translates into larger volume per unit mass, 

increasing the mass extinction efficiency and explaining the remaining discrepancy. On the other hand, volume extinction 

efficiency is less sensitive to changes in aerosol density as a decrease in density decreases both extinction and volume. In 

fact, the volume extinction efficiency remains consistent with the analyses shown in the previous section when changing size 460 

distribution and aerosol density. Thus, we use volume extinction efficiency in the following analysis. 

As shown in Figure 11b, the dry extinction to volume ratio is greatly under-estimated by almost a factor of two by the 

MOSAIC4b simulation, which helps explain the discrepancy described in Figure 5. As described in the previous section, 
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large improvements are found when computing optical properties using finer aerosol bin representation (MOSAIC8b and 

RACM1) with some remaining biases. This large improvement from the 4 to 8 bin configuration is in agreement with 465 

previous studies that found an overall consistency between AOD and surface PM when using 8 size bins (Saide et al., 2014; 

Gao et al., 2016b; Gao et al., 2015). Surprisingly, simulations with better aerosol size distribution representation (RACM2) 

do not significantly modify the representation of the volume and mass extinction efficiency. Figures 12 and 10 show that  

both size distributions (RACM1 and RACM2 for the 8-bin configuration) are centered in a size range with high mass 

extinction efficiency (~9 m2/g around 400 nm diameter). While the original size distribution has less mass assigned to this 470 

high efficiency bin, it has substantial mass in larger size ranges where mass extinction efficiency is still high (~7 m2/g at 

~800 nm diameter). On the other hand, the updated size distribution has larger mass in smaller size bins where mass 

extinction efficiency drops substantially (~3-4 m2/g at 200-250 nm diameter). Thus, the overall mass extinction efficiency 

remains similar for both size distribution due to compensating effects. As performed in the previous section, a sensitivity 

simulation is carried out such that the refractive indices of selected species are increased (RACM3,4), which bring the ratios 475 

to similar levels as the Closure 5 (Figure 11b). 

In terms of aerosol hygroscopic growth and its effects on scattering, all base simulations under-predict f(RH), which also 

helps explain the discrepancies shown in Figure 5. Improving the size distribution (RACM2) has a small but positive effect 

on f(RH) representation. The largest improvement is found when updating the hygroscopicity parameters for the same 

species updated in Closure 5 (RACM4). After this, a slight under-prediction is still found. A possible contribution to this bias 480 

could be linked to the simulations not representing the aerosol chemical composition properly. As seen in Figure 13, 

RACM2 reasonably represents the observed pie-chart but does show a slight over-prediction of the less hydrophilic species 

(sum of OA, BC and OIN is 44% vs 37% in the observations). Another contributor to this bias is the low OA density used in 

the retrospective simulations. Using a lower aerosol density has a similar effect as using larger refractive index (more 

extinction per unit mass) and, as seen in Figure 10a, increasing the refractive index reduces f(RH) explaining the bias. 485 

Sensitivity analysis using observed OA density confirms this finding (not shown). 

AE performance improves drastically when the size resolution is improved (RACM1 to RACM2) as the size distribution is 

shifted to smaller sizes, increasing AE. The AE after all the updates (RACM4) is still low, which is partially related to the 

low OA density but also might be associated with the size distribution. Out of the base simulations, SSA performance is 

better for the RACM1 simulation as MOSAIC8b over-predicts the black carbon fraction and MOSAIC4b has a coarse size 490 

bin representation (see previous section). After the updates (RACM4), SSA skill is comparable to that of the Closure 5 study 

likely due to BC being well represented both in magnitude and fractional contribution (RACM2 results shown in Figure 13 

are similar to those from RACM4). 
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4. Conclusions 

In this study, we first evaluated WRF-Chem forecasts, which included assimilation of AOD, performed to support flight 495 

planning during the NASA/NIER KORUS-AQ field campaign. While forecasts showed accurate predictions of aerosol 

optical depth, there were over-predictions of surface particulate matter in the Korean peninsula, with the largest deviations 

occurring for PM2.5 during a transboundary pollution event. Additional analysis showed that the model was able to capture 

the vertical extent and the relative humidity of the haze layer, pointing towards issues related to the aerosol mass to optical 

properties calculation.  500 

Further analysis was split in two sections. First, a closure study was performed by driving the optical properties 

parametrization with in-situ observations of aerosol size distributions and composition collected by the DC-8 aircraft. These 

were compared to measured optical properties, including mass and volume extinction efficiencies, hygroscopic growth 

represented by f(RH), Angstrom Exponent, and single-scattering albedo (SSA). This analysis showed closure was not 

possible by the base configuration and that multiple modifications were needed to achieve closure. These included driving 505 

the optical properties code with finer size bin representation (from 4 up to 16 bins), increasing refractive indices of 

ammonium nitrate (to 1.553) and organic aerosol (to 1.55) according to ranges found in the recent literature, and increasing 

hygroscopicity parameter of ammonium sulfate (to 0.61), ammonium nitrate (to 0.67), organic aerosol (to 0.14), and other 

inorganics (to 0.14) within published ranges. The coarse bin representation and low values of refractive indices and 

hygroscopicity parameters explain why the forecasts showed the largest discrepancies during the haze event, as these events 510 

are associated with large relative humidity and aerosol size distributions that peak close to the maximum mass extinction 

efficiencies. 

Second, aerosol optical and microphysical properties were evaluated for retrospective simulations using three different 

aerosol models within WRF-Chem. This exercise additionally found that all three aerosol models were unable to properly 

capture the aerosol size distribution, showing a larger size range than what was observed. As a result, a substantial fraction 515 

of modeled aerosol mass was in sizes where the AMS transmission starts decreasing, which led to discrepancies between the 

modeled mass and volume extinction efficiencies. We also found that, while the model uses a value of 1.0 g/cm3 for organic 

aerosol density, larger values were observed with a mean of ~1.5 g/cm3 and considerable variability, which generated further 

discrepancies and reduced the skill in predicting some of the optical properties. Other issues included an over-prediction of 

the OIN fractional contribution by all models (which could be due to issues with OIN emissions and/or secondary aerosol 520 

formation). The size distribution of a configuration using a modal scheme improved by reducing the geometric standard 

deviation (GSD) of the accumulation mode from 2.0 to 1.6. Further increasing the refractive indices and hygroscopicity 

parameters (as noted above) provided overall better representation of optical properties. Future work needs to assess if the 

simulated size distributions can be improved by including primary aerosol emissions in the model using size-resolved and 

source-specific observational datasets (Winijkul et al., 2015; Lu et al., 2015). 525 
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A series of assumptions were made in this study that should be considered when analyzing the results. One of them 

corresponds to the correction of the LAS measurements to account for the PSL calibration and for the saturation of the 

instrument at high aerosol concentrations. The calibration correction was performed by applying a single scaling factor to the 

measured diameters which may not be constant due to changes in aerosol size and composition (Kupc et al., 2018). In 

addition, the saturation correction was applied for all LAS size bins equally, while the saturation of the instrument is both a 530 

function of particle concentration and size.  The use of these assumptions could impact the results which could account for 

some of the minor mismatches found between observations and the Closure study after accounting for possible model 

uncertainties (Closure 5). The LAS was the only instrument on board sampling the overall aerosol size distribution over the 

ranges where the accumulation mode peaked, so it would be useful for future field campaigns to have overlapping 

instruments with similar capabilities over this size range or dilute the sample during high concentration events as has been 535 

done in other deployments (Brock et al., 2019).  

Consistency of relationships between AOD and PM in models is a key element in effectively improving predictions through 

data assimilation of AOD and/or PM mass. This work found that multiple sources of model uncertainties need to be 

addressed to provide accurate representation of optical properties and avoid mismatches when performing data assimilation 

driven by AOD observations. These include the use of fine aerosol size representation in optical properties calculations and 540 

improved representation of aerosol properties (size distribution, chemical composition, refractive index, hygroscopicity 

parameter, density). Accurate representation of aerosol optical properties is also important for other fields that use these 

models to make the connection between aerosol mass concentrations and aerosol optical properties, including assessments of 

aerosol health effects based on satellite data, proper projections of aerosol-radiation interactions done by climate models, 

visibility forecasts, and solar power predictions for energy applications.  545 

In this study we evaluated different configuration of the WRF-Chem model for the specific case of anthropogenic outflow 

from China, thus future studies can perform similar analysis for other types of air masses and assess if the model 

configuration updates suggested here produce better results in other scenarios. Also, similar analysis is also needed for other 

air quality and chemistry-climate models to assess if similar biases or different ones arise. 

Code and data availability  550 

The WRF-Chem code and satellite AOD retrievals used in this study is available upon request. Korean air quality data can 

be found in http://www.airkorea.or.kr, AERONET data is available at https://aeronet.gsfc.nasa.gov/, and KORUS-AQ data 

and flight reports are public at https://www-air.larc.nasa.gov/missions/korus-aq/. Contact P.E. Saide (saide@atmos.ucla.edu) 

for data requests. 
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Tables 

Table 1. Summary of WRF-Chem simulations. Refractive indices, hygroscopicity parameters and size bins are defined in Table 2 

and 3. Refer to section 3.2 and 3.3 for definitions on base and updated configurations. 

Name Aerosol 

Scheme 

Size bins 

used for OP 

GSD of the 

modes 

Refractive 

index 

Hygroscopicity 

MOSAIC4b Sectional 

4 bins 

4 bins - Base Base 

MOSAIC8b Sectional 

8 bins 

8 bins - Base Base 

RACM1 Modal 8 bins Base Base Base 

RACM2 Modal 8 bins Updated Base Base 

RACM3 Modal 8 bins Updated Updated Base 

RACM4 Modal 8 bins Updated Updated Updated 
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Table 2. Real refractive indexes [dimensionless], hygroscopicity parameter [dimensionless] and aerosol density [g/cm3] used in the 

base and updated configurations. Values that changed in the updated configurations are noted in cursive. Note that measured 

organic aerosol density was used in the closure studies. 
 

Real Refractive 

Index 

Hygroscopicity 

parameter 

Density 

 
base updated base updated base 

ammonium sulfate 1.52 1.527 0.5 0.61 1.8 

ammonium nitrate 1.5 1.553 0.5 0.67 1.8 

sodium chloride 1.45 1.45 1.16 1.16 2.2 

other inorganics 1.55 1.55 0 0.14 2.6 

organic aerosol 1.45 1.55 0 0.14 1 

black carbon 1.85 1.85 0 0 1 

aerosol water 1.33 1.33 - - 1 
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Table 3. Lower and upper diameters in μm for the 4, 8 and 16 size bins configurations 

4 bin  Lower Upper 
 

8 bin Lower Upper 
 

16 bin Lower Upper 

Bin 1 0.039 0.156 
 

Bin 1 0.039 0.078 
 

Bin 1 0.039 0.0552 

Bin 2 0.156 0.625 
 

Bin 2 0.078 0.156 
 

Bin 2 0.0552 0.078 

Bin 3 0.625 2.5 
 

Bin 3 0.156 0.312 
 

Bin 3 0.078 0.11 

Bin 4 2.5 10 
 

Bin 4 0.312 0.625 
 

Bin 4 0.11 0.156 

    
Bin 5 0.625 1.25 

 
Bin 5 0.156 0.221 

    
Bin 6 1.25 2.5 

 
Bin 6 0.221 0.312 

    
Bin 7 2.5 5 

 
Bin 7 0.312 0.442 

    
Bin 8 5 10 

 
Bin 8 0.442 0.625 

        
Bin 9 0.625 0.884 

        
Bin 10 0.884 1.25 

        
Bin 11 1.25 1.77 

        
Bin 12 1.77 2.5 

        
Bin 13 2.5 3.54 

        
Bin 14 3.54 5 

        
Bin 15 5 7.07 

        
Bin 16 7.07 10 

 

Table 4. Description of closure cases. Refer to section 3.2 for definitions on base and updated configurations. Size bins are defined 

in Table 3. 

Name # of size 

bins 

Refractive 

index 

Hygroscopicity 

Closure1 4 Base Base 

Closure2 8 Base Base 

Closure3 16 Base Base 

Closure4 16 Updated Base 

Closure5 16 Updated Updated 
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Figures 

 

 

Figure 1. Modeling domains for the forecast simulations. Only the outer domain is used for the retrospective simulations. 

 890 

 

Figure 2. a) Extinction to mass ratio for dry conditions as a function of dry particle diameter considering a monodisperse aerosol 

distribution of fixed aerosol composition equal to the mean of the data analyzed. Blue and green lines represent results using 

optical properties code from WRF-Chem and the alternative approach, respectively. b) Scatter plot comparing aerosol water 

[μg/m3] estimated by WRF-Chem routines for the forecast simulations (MOSAIC 4 bin) and using the alternative approach.  The 895 
solid red line indicates the 1:1 line and the dashed red line represents the regression line (slope of 0.9). 
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Figure 3. a) Scatterplot of total inorganic aerosol (Sulfate, ammonium, chloride and nitrate) mass [μg/m3] as measured by SAGA 

and AMS, averaging the AMS data to the SAGA integration time (R2 = 0.72, slope = 1.07). The solid red line indicates the 1:1 line. 900 
b) Scatterplot of aerosol volume measured by the AMS and LAS volume accounting for the AMS transmission. The solid red line 

indicates the 1:1 line, the solid black line represents an approximate cut-off for the LAS saturation, and the dashed red line 

represents the regression line when using data below the black line (slope of 0.9). 

 

Figure 4. a) Time series of rubidium (grey, left axis, measured by the AMS), black carbon (right, black axis, measured by SP2), 905 
and total organic aerosol (green, right, measured by AMS), during the haze event sampled by the NASA DC-8 over the Yellow Sea. 

Rubidium was quantified using the AMS difference signal, a relative ionization efficiency of 1, and the same collection efficiency as 

the rest of the submicron aerosol (Nault et al., 2018). b) Average size resolved AMS measurements sampled (aerodynamic 

diameter) by the NASA DC-8 for the same period shown in a).  
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 910 

Figure 5. Time series of box and whisker plots for AOD (a), PM10 (b) and PM2.5 (c) for select days on the month of May 2016 

comparing observations and forecasts over sites in South Korea. Data are aggregated by day (in UTC time). Center solid lines 

indicate the median, circles represent the mean, boxes indicate upper and lower quartiles, and whiskers show the upper and lower 

deciles. 
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Figure 6. Observed (left) and forecasted (center) AOD maps at 3 UTC (noon local Korean time) on May 25th. The right plot shows 

Advanced Himawari Imager true color imagery for the same time with overlays of the DC-8 (in yellow) and Twin Otter (in red) 

flight tracks for that day (Source: KORUS-AQ flight report).  
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Figure 7. Left panels: DIAL-HSRL (upper panel) and WRF-Chem forecast simulation (bottom panel) extinction curtains at 532 

nm for the KORUS-AQ flight on May 24th. Right panel: Box and whisker plots as in Figure 5 aggregating observed and modeled 

data shown in the left panels for the periods where the aircraft was above the haze layer (00-01 UTC and 5-5:45 UTC). 
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Figure 8. Resulting average size distributions when aggregating observed data (2:00-5:00 UTC) to 4, 8 and 16 size bins. Red lines 

separate bins aggregated when going from finer to coarser bin representation. Size bins boundaries are defined in Table 3. Red 930 
circles indicate the average AMS transmission efficiency (dimensionless) for each size bin. 
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Figure 9 Box and whisker plots (as in Fig. 5) showing observations and closure results driving the optical properties code with 

observations. Closure cases are described in Table 4. Results are shown for (a) the extinction (550 nm) to mass ratio (mass 935 
extinction efficiency), (b) extinction to volume ratio (volume extinction efficiency), (c) f(RH) measured at 550 nm, (d) 550-700 

Angstrom exponent and (e) Dry single-scattering albedo. The blue numbers on top of the plots represent the sample size used when 

computing statistics. 
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Figure 10. a) Volume extinction efficiency (blue, scale on the left) and f(RH) (orange, scale on the right) as a function of geometric 940 
dry particle diameter considering a monodisperse aerosol distribution of fixed aerosol composition equal to the mean of the data 

analyzed. Different lines represent cases where real refractive index and hygroscopicity correspond to the base and updated 

conditions (see text for details). Black markers on top of the plots represent the calculated volume mean diameter for each size bin 

when using 4 (circles), 8 (squares) and 16 (x’s) bins for the mean observed size distribution (numerical values found on Fig. 8). 

Note only mean diameters below 1 μm are shown. b) Same as a) but for dry Single-scattering albedo and 550-700nm Angstrom 945 
Exponent. 
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Figure 11. As Figure 9 but comparing observations and Closure study 5 to different modeling configurations (described in Table 

1). 
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 950 

Figure 12. Same as Figure 8 but for simulations using different modeling configurations. Size bins are aggregated to coarser bins 

when possible for comparison across configurations. Size bin boundaries are defined in Table 3. 
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 955 

Figure 13. Left panel: Bar plot showing sub-micron aerosol mass concentration by species for observations (AMS+SP2) and 

retrospective simulations. Right panels: Pie charts showing percentage contribution by each species for observations and 

retrospective simulations. 
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